$$$\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}$$$ 的积分

该计算器将求出$$$\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - \int{\cot{\left(x \right)} d x}\right)}}$$

将余切改写为 $$$\cot\left(x\right)=\frac{\cos\left(x\right)}{\sin\left(x\right)}$$$:

$$- \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\cot{\left(x \right)} d x}}} = - \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}}$$

$$$u=\sin{\left(x \right)}$$$

$$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步骤见»),并有$$$\cos{\left(x \right)} dx = du$$$

所以,

$$- \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = - \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}} = - \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回忆一下 $$$u=\sin{\left(x \right)}$$$:

$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} = - \ln{\left(\left|{{\color{red}{\sin{\left(x \right)}}}}\right| \right)} - \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x}$$

$$$c=3$$$$$$f{\left(x \right)} = \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\left(3 \int{\tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x}\right)}}$$

改写被积函数:

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\frac{\sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} d x}}}$$

改写为用正切表示的形式:

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\frac{\sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\tan^{2}{\left(3 x \right)} d x}}}$$

$$$u=3 x$$$

$$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (步骤见»),并有$$$dx = \frac{du}{3}$$$

积分变为

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\tan^{2}{\left(3 x \right)} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{3} d u}}}$$

$$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \tan^{2}{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{3} d u}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\left(\frac{\int{\tan^{2}{\left(u \right)} d u}}{3}\right)}}$$

$$$v=\tan{\left(u \right)}$$$

$$$u=\operatorname{atan}{\left(v \right)}$$$$$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$(步骤见»)。

因此,

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\tan^{2}{\left(u \right)} d u}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$

改写并拆分该分式:

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$

逐项积分:

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$

应用常数法则 $$$\int c\, dv = c v$$$,使用 $$$c=1$$$

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + \int{\frac{1}{v^{2} + 1} d v} - {\color{red}{\int{1 d v}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + \int{\frac{1}{v^{2} + 1} d v} - {\color{red}{v}}$$

$$$\frac{1}{v^{2} + 1}$$$ 的积分为 $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:

$$- v - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = - v - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + {\color{red}{\operatorname{atan}{\left(v \right)}}}$$

回忆一下 $$$v=\tan{\left(u \right)}$$$:

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + \operatorname{atan}{\left({\color{red}{v}} \right)} - {\color{red}{v}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + \operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)} - {\color{red}{\tan{\left(u \right)}}}$$

回忆一下 $$$u=3 x$$$:

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - \tan{\left({\color{red}{u}} \right)} + \operatorname{atan}{\left(\tan{\left({\color{red}{u}} \right)} \right)} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - \tan{\left({\color{red}{\left(3 x\right)}} \right)} + \operatorname{atan}{\left(\tan{\left({\color{red}{\left(3 x\right)}} \right)} \right)}$$

将正切表示为 $$$\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}$$$:

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\int{\tan{\left(x \right)} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}$$

$$$u=\cos{\left(x \right)}$$$

$$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (步骤见»),并有$$$\sin{\left(x \right)} dx = - du$$$

该积分可以改写为

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$

$$$c=-1$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回忆一下 $$$u=\cos{\left(x \right)}$$$:

$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)}$$

因此,

$$\int{\left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)d x} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)}$$

化简:

$$\int{\left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)d x} = 3 x - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)}$$

加上积分常数:

$$\int{\left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)d x} = 3 x - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)}+C$$

答案

$$$\int \left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)\, dx = \left(3 x - \ln\left(\left|{\sin{\left(x \right)}}\right|\right) - \ln\left(\left|{\cos{\left(x \right)}}\right|\right) - \tan{\left(3 x \right)}\right) + C$$$A


Please try a new game Rotatly