Intégrale de $$$\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - \int{\cot{\left(x \right)} d x}\right)}}$$
Réécrivez la cotangente sous la forme $$$\cot\left(x\right)=\frac{\cos\left(x\right)}{\sin\left(x\right)}$$$:
$$- \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\cot{\left(x \right)} d x}}} = - \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}}$$
Soit $$$u=\sin{\left(x \right)}$$$.
Alors $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\cos{\left(x \right)} dx = du$$$.
Donc,
$$- \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = - \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$- \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}} = - \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Rappelons que $$$u=\sin{\left(x \right)}$$$ :
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x} = - \ln{\left(\left|{{\color{red}{\sin{\left(x \right)}}}}\right| \right)} - \int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x} + \int{\tan{\left(x \right)} d x}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=3$$$ et $$$f{\left(x \right)} = \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)}$$$ :
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\left(3 \int{\tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x}\right)}}$$
Réécrivez l'intégrande:
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\frac{\sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} d x}}}$$
Exprimer en fonction de la tangente:
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\frac{\sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\tan^{2}{\left(3 x \right)} d x}}}$$
Soit $$$u=3 x$$$.
Alors $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{3}$$$.
L’intégrale devient
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\tan^{2}{\left(3 x \right)} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{3} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{3}$$$ et $$$f{\left(u \right)} = \tan^{2}{\left(u \right)}$$$ :
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{3} d u}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - 3 {\color{red}{\left(\frac{\int{\tan^{2}{\left(u \right)} d u}}{3}\right)}}$$
Soit $$$v=\tan{\left(u \right)}$$$.
Alors $$$u=\operatorname{atan}{\left(v \right)}$$$ et $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$ (les étapes peuvent être consultées »).
L’intégrale devient
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\tan^{2}{\left(u \right)} d u}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
Réécrire et décomposer la fraction:
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
Intégrez terme à terme:
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dv = c v$$$ avec $$$c=1$$$:
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + \int{\frac{1}{v^{2} + 1} d v} - {\color{red}{\int{1 d v}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + \int{\frac{1}{v^{2} + 1} d v} - {\color{red}{v}}$$
L’intégrale de $$$\frac{1}{v^{2} + 1}$$$ est $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$ :
$$- v - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = - v - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + {\color{red}{\operatorname{atan}{\left(v \right)}}}$$
Rappelons que $$$v=\tan{\left(u \right)}$$$ :
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + \operatorname{atan}{\left({\color{red}{v}} \right)} - {\color{red}{v}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} + \operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)} - {\color{red}{\tan{\left(u \right)}}}$$
Rappelons que $$$u=3 x$$$ :
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - \tan{\left({\color{red}{u}} \right)} + \operatorname{atan}{\left(\tan{\left({\color{red}{u}} \right)} \right)} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} + \int{\tan{\left(x \right)} d x} - \tan{\left({\color{red}{\left(3 x\right)}} \right)} + \operatorname{atan}{\left(\tan{\left({\color{red}{\left(3 x\right)}} \right)} \right)}$$
Réécrivez la tangente sous la forme $$$\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}$$$:
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\int{\tan{\left(x \right)} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}$$
Soit $$$u=\cos{\left(x \right)}$$$.
Alors $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sin{\left(x \right)} dx = - du$$$.
L’intégrale devient
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = \frac{1}{u}$$$ :
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} + {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Rappelons que $$$u=\cos{\left(x \right)}$$$ :
$$- \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)}$$
Par conséquent,
$$\int{\left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)d x} = - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)} + \operatorname{atan}{\left(\tan{\left(3 x \right)} \right)}$$
Simplifier:
$$\int{\left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)d x} = 3 x - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)}$$
Ajouter la constante d'intégration :
$$\int{\left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)d x} = 3 x - \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)} - \tan{\left(3 x \right)}+C$$
Réponse
$$$\int \left(\tan{\left(x \right)} - 3 \tan^{3}{\left(3 x \right)} \cot{\left(3 x \right)} - \cot{\left(x \right)}\right)\, dx = \left(3 x - \ln\left(\left|{\sin{\left(x \right)}}\right|\right) - \ln\left(\left|{\cos{\left(x \right)}}\right|\right) - \tan{\left(3 x \right)}\right) + C$$$A