$$$t^{3} \sin{\left(t \right)}$$$ 的积分

该计算器将求出$$$t^{3} \sin{\left(t \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int t^{3} \sin{\left(t \right)}\, dt$$$

解答

对于积分$$$\int{t^{3} \sin{\left(t \right)} d t}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=t^{3}$$$$$$\operatorname{dv}=\sin{\left(t \right)} dt$$$

$$$\operatorname{du}=\left(t^{3}\right)^{\prime }dt=3 t^{2} dt$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\sin{\left(t \right)} d t}=- \cos{\left(t \right)}$$$ (步骤见 »)。

因此,

$${\color{red}{\int{t^{3} \sin{\left(t \right)} d t}}}={\color{red}{\left(t^{3} \cdot \left(- \cos{\left(t \right)}\right)-\int{\left(- \cos{\left(t \right)}\right) \cdot 3 t^{2} d t}\right)}}={\color{red}{\left(- t^{3} \cos{\left(t \right)} - \int{\left(- 3 t^{2} \cos{\left(t \right)}\right)d t}\right)}}$$

$$$c=-3$$$$$$f{\left(t \right)} = t^{2} \cos{\left(t \right)}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$

$$- t^{3} \cos{\left(t \right)} - {\color{red}{\int{\left(- 3 t^{2} \cos{\left(t \right)}\right)d t}}} = - t^{3} \cos{\left(t \right)} - {\color{red}{\left(- 3 \int{t^{2} \cos{\left(t \right)} d t}\right)}}$$

对于积分$$$\int{t^{2} \cos{\left(t \right)} d t}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=t^{2}$$$$$$\operatorname{dv}=\cos{\left(t \right)} dt$$$

$$$\operatorname{du}=\left(t^{2}\right)^{\prime }dt=2 t dt$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\cos{\left(t \right)} d t}=\sin{\left(t \right)}$$$ (步骤见 »)。

积分变为

$$- t^{3} \cos{\left(t \right)} + 3 {\color{red}{\int{t^{2} \cos{\left(t \right)} d t}}}=- t^{3} \cos{\left(t \right)} + 3 {\color{red}{\left(t^{2} \cdot \sin{\left(t \right)}-\int{\sin{\left(t \right)} \cdot 2 t d t}\right)}}=- t^{3} \cos{\left(t \right)} + 3 {\color{red}{\left(t^{2} \sin{\left(t \right)} - \int{2 t \sin{\left(t \right)} d t}\right)}}$$

$$$c=2$$$$$$f{\left(t \right)} = t \sin{\left(t \right)}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$

$$- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} - 3 {\color{red}{\int{2 t \sin{\left(t \right)} d t}}} = - t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} - 3 {\color{red}{\left(2 \int{t \sin{\left(t \right)} d t}\right)}}$$

对于积分$$$\int{t \sin{\left(t \right)} d t}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=t$$$$$$\operatorname{dv}=\sin{\left(t \right)} dt$$$

$$$\operatorname{du}=\left(t\right)^{\prime }dt=1 dt$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\sin{\left(t \right)} d t}=- \cos{\left(t \right)}$$$ (步骤见 »)。

因此,

$$- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} - 6 {\color{red}{\int{t \sin{\left(t \right)} d t}}}=- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} - 6 {\color{red}{\left(t \cdot \left(- \cos{\left(t \right)}\right)-\int{\left(- \cos{\left(t \right)}\right) \cdot 1 d t}\right)}}=- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} - 6 {\color{red}{\left(- t \cos{\left(t \right)} - \int{\left(- \cos{\left(t \right)}\right)d t}\right)}}$$

$$$c=-1$$$$$$f{\left(t \right)} = \cos{\left(t \right)}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$

$$- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} + 6 {\color{red}{\int{\left(- \cos{\left(t \right)}\right)d t}}} = - t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} + 6 {\color{red}{\left(- \int{\cos{\left(t \right)} d t}\right)}}$$

余弦函数的积分为 $$$\int{\cos{\left(t \right)} d t} = \sin{\left(t \right)}$$$

$$- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} - 6 {\color{red}{\int{\cos{\left(t \right)} d t}}} = - t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} - 6 {\color{red}{\sin{\left(t \right)}}}$$

因此,

$$\int{t^{3} \sin{\left(t \right)} d t} = - t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} - 6 \sin{\left(t \right)}$$

加上积分常数:

$$\int{t^{3} \sin{\left(t \right)} d t} = - t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} - 6 \sin{\left(t \right)}+C$$

答案

$$$\int t^{3} \sin{\left(t \right)}\, dt = \left(- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} - 6 \sin{\left(t \right)}\right) + C$$$A


Please try a new game Rotatly