$$$t^{3} \sin{\left(t \right)}$$$の積分
入力内容
$$$\int t^{3} \sin{\left(t \right)}\, dt$$$ を求めよ。
解答
積分 $$$\int{t^{3} \sin{\left(t \right)} d t}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=t^{3}$$$ と $$$\operatorname{dv}=\sin{\left(t \right)} dt$$$ とする。
したがって、$$$\operatorname{du}=\left(t^{3}\right)^{\prime }dt=3 t^{2} dt$$$(手順は»を参照)および$$$\operatorname{v}=\int{\sin{\left(t \right)} d t}=- \cos{\left(t \right)}$$$(手順は»を参照)。
したがって、
$${\color{red}{\int{t^{3} \sin{\left(t \right)} d t}}}={\color{red}{\left(t^{3} \cdot \left(- \cos{\left(t \right)}\right)-\int{\left(- \cos{\left(t \right)}\right) \cdot 3 t^{2} d t}\right)}}={\color{red}{\left(- t^{3} \cos{\left(t \right)} - \int{\left(- 3 t^{2} \cos{\left(t \right)}\right)d t}\right)}}$$
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=-3$$$ と $$$f{\left(t \right)} = t^{2} \cos{\left(t \right)}$$$ に対して適用する:
$$- t^{3} \cos{\left(t \right)} - {\color{red}{\int{\left(- 3 t^{2} \cos{\left(t \right)}\right)d t}}} = - t^{3} \cos{\left(t \right)} - {\color{red}{\left(- 3 \int{t^{2} \cos{\left(t \right)} d t}\right)}}$$
積分 $$$\int{t^{2} \cos{\left(t \right)} d t}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=t^{2}$$$ と $$$\operatorname{dv}=\cos{\left(t \right)} dt$$$ とする。
したがって、$$$\operatorname{du}=\left(t^{2}\right)^{\prime }dt=2 t dt$$$(手順は»を参照)および$$$\operatorname{v}=\int{\cos{\left(t \right)} d t}=\sin{\left(t \right)}$$$(手順は»を参照)。
この積分は次のように書き換えられる
$$- t^{3} \cos{\left(t \right)} + 3 {\color{red}{\int{t^{2} \cos{\left(t \right)} d t}}}=- t^{3} \cos{\left(t \right)} + 3 {\color{red}{\left(t^{2} \cdot \sin{\left(t \right)}-\int{\sin{\left(t \right)} \cdot 2 t d t}\right)}}=- t^{3} \cos{\left(t \right)} + 3 {\color{red}{\left(t^{2} \sin{\left(t \right)} - \int{2 t \sin{\left(t \right)} d t}\right)}}$$
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=2$$$ と $$$f{\left(t \right)} = t \sin{\left(t \right)}$$$ に対して適用する:
$$- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} - 3 {\color{red}{\int{2 t \sin{\left(t \right)} d t}}} = - t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} - 3 {\color{red}{\left(2 \int{t \sin{\left(t \right)} d t}\right)}}$$
積分 $$$\int{t \sin{\left(t \right)} d t}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=t$$$ と $$$\operatorname{dv}=\sin{\left(t \right)} dt$$$ とする。
したがって、$$$\operatorname{du}=\left(t\right)^{\prime }dt=1 dt$$$(手順は»を参照)および$$$\operatorname{v}=\int{\sin{\left(t \right)} d t}=- \cos{\left(t \right)}$$$(手順は»を参照)。
したがって、
$$- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} - 6 {\color{red}{\int{t \sin{\left(t \right)} d t}}}=- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} - 6 {\color{red}{\left(t \cdot \left(- \cos{\left(t \right)}\right)-\int{\left(- \cos{\left(t \right)}\right) \cdot 1 d t}\right)}}=- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} - 6 {\color{red}{\left(- t \cos{\left(t \right)} - \int{\left(- \cos{\left(t \right)}\right)d t}\right)}}$$
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=-1$$$ と $$$f{\left(t \right)} = \cos{\left(t \right)}$$$ に対して適用する:
$$- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} + 6 {\color{red}{\int{\left(- \cos{\left(t \right)}\right)d t}}} = - t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} + 6 {\color{red}{\left(- \int{\cos{\left(t \right)} d t}\right)}}$$
余弦の積分は$$$\int{\cos{\left(t \right)} d t} = \sin{\left(t \right)}$$$:
$$- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} - 6 {\color{red}{\int{\cos{\left(t \right)} d t}}} = - t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} - 6 {\color{red}{\sin{\left(t \right)}}}$$
したがって、
$$\int{t^{3} \sin{\left(t \right)} d t} = - t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} - 6 \sin{\left(t \right)}$$
積分定数を加える:
$$\int{t^{3} \sin{\left(t \right)} d t} = - t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} - 6 \sin{\left(t \right)}+C$$
解答
$$$\int t^{3} \sin{\left(t \right)}\, dt = \left(- t^{3} \cos{\left(t \right)} + 3 t^{2} \sin{\left(t \right)} + 6 t \cos{\left(t \right)} - 6 \sin{\left(t \right)}\right) + C$$$A