$$$\sin{\left(2 \theta \right)}$$$ 的积分
您的输入
求$$$\int \sin{\left(2 \theta \right)}\, d\theta$$$。
解答
设$$$u=2 \theta$$$。
则$$$du=\left(2 \theta\right)^{\prime }d\theta = 2 d\theta$$$ (步骤见»),并有$$$d\theta = \frac{du}{2}$$$。
因此,
$${\color{red}{\int{\sin{\left(2 \theta \right)} d \theta}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
回忆一下 $$$u=2 \theta$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{2} = - \frac{\cos{\left({\color{red}{\left(2 \theta\right)}} \right)}}{2}$$
因此,
$$\int{\sin{\left(2 \theta \right)} d \theta} = - \frac{\cos{\left(2 \theta \right)}}{2}$$
加上积分常数:
$$\int{\sin{\left(2 \theta \right)} d \theta} = - \frac{\cos{\left(2 \theta \right)}}{2}+C$$
答案
$$$\int \sin{\left(2 \theta \right)}\, d\theta = - \frac{\cos{\left(2 \theta \right)}}{2} + C$$$A