$$$\sin{\left(2 \theta \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\sin{\left(2 \theta \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \sin{\left(2 \theta \right)}\, d\theta$$$.

Çözüm

$$$u=2 \theta$$$ olsun.

Böylece $$$du=\left(2 \theta\right)^{\prime }d\theta = 2 d\theta$$$ (adımlar » görülebilir) ve $$$d\theta = \frac{du}{2}$$$ elde ederiz.

İntegral şu şekilde yeniden yazılabilir:

$${\color{red}{\int{\sin{\left(2 \theta \right)} d \theta}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ile uygula:

$${\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$

Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$

Hatırlayın ki $$$u=2 \theta$$$:

$$- \frac{\cos{\left({\color{red}{u}} \right)}}{2} = - \frac{\cos{\left({\color{red}{\left(2 \theta\right)}} \right)}}{2}$$

Dolayısıyla,

$$\int{\sin{\left(2 \theta \right)} d \theta} = - \frac{\cos{\left(2 \theta \right)}}{2}$$

İntegrasyon sabitini ekleyin:

$$\int{\sin{\left(2 \theta \right)} d \theta} = - \frac{\cos{\left(2 \theta \right)}}{2}+C$$

Cevap

$$$\int \sin{\left(2 \theta \right)}\, d\theta = - \frac{\cos{\left(2 \theta \right)}}{2} + C$$$A


Please try a new game Rotatly