$$$e^{4 x} \sin{\left(x \right)}$$$ 的积分
您的输入
求$$$\int e^{4 x} \sin{\left(x \right)}\, dx$$$。
解答
对于积分$$$\int{e^{4 x} \sin{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\sin{\left(x \right)}$$$ 和 $$$\operatorname{dv}=e^{4 x} dx$$$。
则 $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (步骤见 »)。
所以,
$${\color{red}{\int{e^{4 x} \sin{\left(x \right)} d x}}}={\color{red}{\left(\sin{\left(x \right)} \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot \cos{\left(x \right)} d x}\right)}}={\color{red}{\left(\frac{e^{4 x} \sin{\left(x \right)}}{4} - \int{\frac{e^{4 x} \cos{\left(x \right)}}{4} d x}\right)}}$$
对 $$$c=\frac{1}{4}$$$ 和 $$$f{\left(x \right)} = e^{4 x} \cos{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{e^{4 x} \sin{\left(x \right)}}{4} - {\color{red}{\int{\frac{e^{4 x} \cos{\left(x \right)}}{4} d x}}} = \frac{e^{4 x} \sin{\left(x \right)}}{4} - {\color{red}{\left(\frac{\int{e^{4 x} \cos{\left(x \right)} d x}}{4}\right)}}$$
对于积分$$$\int{e^{4 x} \cos{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\cos{\left(x \right)}$$$ 和 $$$\operatorname{dv}=e^{4 x} dx$$$。
则 $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (步骤见 »)。
积分变为
$$\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{{\color{red}{\int{e^{4 x} \cos{\left(x \right)} d x}}}}{4}=\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{{\color{red}{\left(\cos{\left(x \right)} \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}}{4}=\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{{\color{red}{\left(\frac{e^{4 x} \cos{\left(x \right)}}{4} - \int{\left(- \frac{e^{4 x} \sin{\left(x \right)}}{4}\right)d x}\right)}}}{4}$$
对 $$$c=- \frac{1}{4}$$$ 和 $$$f{\left(x \right)} = e^{4 x} \sin{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{e^{4 x} \cos{\left(x \right)}}{16} + \frac{{\color{red}{\int{\left(- \frac{e^{4 x} \sin{\left(x \right)}}{4}\right)d x}}}}{4} = \frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{e^{4 x} \cos{\left(x \right)}}{16} + \frac{{\color{red}{\left(- \frac{\int{e^{4 x} \sin{\left(x \right)} d x}}{4}\right)}}}{4}$$
我们得到了一个之前见过的积分。
因此,我们得到了关于该积分的如下简单等式:
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{e^{4 x} \cos{\left(x \right)}}{16} - \frac{\int{e^{4 x} \sin{\left(x \right)} d x}}{16}$$
解得
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17}$$
因此,
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17}$$
加上积分常数:
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17}+C$$
答案
$$$\int e^{4 x} \sin{\left(x \right)}\, dx = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17} + C$$$A