Integralen av $$$e^{4 x} \sin{\left(x \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int e^{4 x} \sin{\left(x \right)}\, dx$$$.
Lösning
För integralen $$$\int{e^{4 x} \sin{\left(x \right)} d x}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Låt $$$\operatorname{u}=\sin{\left(x \right)}$$$ och $$$\operatorname{dv}=e^{4 x} dx$$$.
Då gäller $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (stegen kan ses »).
Alltså,
$${\color{red}{\int{e^{4 x} \sin{\left(x \right)} d x}}}={\color{red}{\left(\sin{\left(x \right)} \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot \cos{\left(x \right)} d x}\right)}}={\color{red}{\left(\frac{e^{4 x} \sin{\left(x \right)}}{4} - \int{\frac{e^{4 x} \cos{\left(x \right)}}{4} d x}\right)}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{4}$$$ och $$$f{\left(x \right)} = e^{4 x} \cos{\left(x \right)}$$$:
$$\frac{e^{4 x} \sin{\left(x \right)}}{4} - {\color{red}{\int{\frac{e^{4 x} \cos{\left(x \right)}}{4} d x}}} = \frac{e^{4 x} \sin{\left(x \right)}}{4} - {\color{red}{\left(\frac{\int{e^{4 x} \cos{\left(x \right)} d x}}{4}\right)}}$$
För integralen $$$\int{e^{4 x} \cos{\left(x \right)} d x}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Låt $$$\operatorname{u}=\cos{\left(x \right)}$$$ och $$$\operatorname{dv}=e^{4 x} dx$$$.
Då gäller $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (stegen kan ses »).
Alltså,
$$\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{{\color{red}{\int{e^{4 x} \cos{\left(x \right)} d x}}}}{4}=\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{{\color{red}{\left(\cos{\left(x \right)} \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}}{4}=\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{{\color{red}{\left(\frac{e^{4 x} \cos{\left(x \right)}}{4} - \int{\left(- \frac{e^{4 x} \sin{\left(x \right)}}{4}\right)d x}\right)}}}{4}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=- \frac{1}{4}$$$ och $$$f{\left(x \right)} = e^{4 x} \sin{\left(x \right)}$$$:
$$\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{e^{4 x} \cos{\left(x \right)}}{16} + \frac{{\color{red}{\int{\left(- \frac{e^{4 x} \sin{\left(x \right)}}{4}\right)d x}}}}{4} = \frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{e^{4 x} \cos{\left(x \right)}}{16} + \frac{{\color{red}{\left(- \frac{\int{e^{4 x} \sin{\left(x \right)} d x}}{4}\right)}}}{4}$$
Vi har kommit till en integral som vi redan har sett.
Således har vi erhållit följande enkla ekvation med avseende på integralen:
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{e^{4 x} \cos{\left(x \right)}}{16} - \frac{\int{e^{4 x} \sin{\left(x \right)} d x}}{16}$$
Löser vi den får vi att
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17}$$
Alltså,
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17}$$
Lägg till integrationskonstanten:
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17}+C$$
Svar
$$$\int e^{4 x} \sin{\left(x \right)}\, dx = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17} + C$$$A