Integral de $$$e^{4 x} \sin{\left(x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int e^{4 x} \sin{\left(x \right)}\, dx$$$.
Solución
Para la integral $$$\int{e^{4 x} \sin{\left(x \right)} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sean $$$\operatorname{u}=\sin{\left(x \right)}$$$ y $$$\operatorname{dv}=e^{4 x} dx$$$.
Entonces $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (los pasos pueden verse »).
La integral se convierte en
$${\color{red}{\int{e^{4 x} \sin{\left(x \right)} d x}}}={\color{red}{\left(\sin{\left(x \right)} \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot \cos{\left(x \right)} d x}\right)}}={\color{red}{\left(\frac{e^{4 x} \sin{\left(x \right)}}{4} - \int{\frac{e^{4 x} \cos{\left(x \right)}}{4} d x}\right)}}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(x \right)} = e^{4 x} \cos{\left(x \right)}$$$:
$$\frac{e^{4 x} \sin{\left(x \right)}}{4} - {\color{red}{\int{\frac{e^{4 x} \cos{\left(x \right)}}{4} d x}}} = \frac{e^{4 x} \sin{\left(x \right)}}{4} - {\color{red}{\left(\frac{\int{e^{4 x} \cos{\left(x \right)} d x}}{4}\right)}}$$
Para la integral $$$\int{e^{4 x} \cos{\left(x \right)} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sean $$$\operatorname{u}=\cos{\left(x \right)}$$$ y $$$\operatorname{dv}=e^{4 x} dx$$$.
Entonces $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (los pasos pueden verse »).
La integral puede reescribirse como
$$\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{{\color{red}{\int{e^{4 x} \cos{\left(x \right)} d x}}}}{4}=\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{{\color{red}{\left(\cos{\left(x \right)} \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}}{4}=\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{{\color{red}{\left(\frac{e^{4 x} \cos{\left(x \right)}}{4} - \int{\left(- \frac{e^{4 x} \sin{\left(x \right)}}{4}\right)d x}\right)}}}{4}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=- \frac{1}{4}$$$ y $$$f{\left(x \right)} = e^{4 x} \sin{\left(x \right)}$$$:
$$\frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{e^{4 x} \cos{\left(x \right)}}{16} + \frac{{\color{red}{\int{\left(- \frac{e^{4 x} \sin{\left(x \right)}}{4}\right)d x}}}}{4} = \frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{e^{4 x} \cos{\left(x \right)}}{16} + \frac{{\color{red}{\left(- \frac{\int{e^{4 x} \sin{\left(x \right)} d x}}{4}\right)}}}{4}$$
Hemos llegado a una integral que ya hemos visto.
Así, hemos obtenido la siguiente ecuación simple con respecto a la integral:
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{e^{4 x} \sin{\left(x \right)}}{4} - \frac{e^{4 x} \cos{\left(x \right)}}{16} - \frac{\int{e^{4 x} \sin{\left(x \right)} d x}}{16}$$
Al resolverlo, obtenemos que
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17}$$
Por lo tanto,
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17}$$
Añade la constante de integración:
$$\int{e^{4 x} \sin{\left(x \right)} d x} = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17}+C$$
Respuesta
$$$\int e^{4 x} \sin{\left(x \right)}\, dx = \frac{\left(4 \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{4 x}}{17} + C$$$A