$$$e^{- 2 x^{2}}$$$ 的积分
您的输入
求$$$\int e^{- 2 x^{2}}\, dx$$$。
解答
设$$$u=\sqrt{2} x$$$。
则$$$du=\left(\sqrt{2} x\right)^{\prime }dx = \sqrt{2} dx$$$ (步骤见»),并有$$$dx = \frac{\sqrt{2} du}{2}$$$。
该积分可以改写为
$${\color{red}{\int{e^{- 2 x^{2}} d x}}} = {\color{red}{\int{\frac{\sqrt{2} e^{- u^{2}}}{2} d u}}}$$
对 $$$c=\frac{\sqrt{2}}{2}$$$ 和 $$$f{\left(u \right)} = e^{- u^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\sqrt{2} e^{- u^{2}}}{2} d u}}} = {\color{red}{\left(\frac{\sqrt{2} \int{e^{- u^{2}} d u}}{2}\right)}}$$
该积分(误差函数)没有闭式表达式:
$$\frac{\sqrt{2} {\color{red}{\int{e^{- u^{2}} d u}}}}{2} = \frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{2}$$
回忆一下 $$$u=\sqrt{2} x$$$:
$$\frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{4} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{\sqrt{2} x}} \right)}}{4}$$
因此,
$$\int{e^{- 2 x^{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\sqrt{2} x \right)}}{4}$$
加上积分常数:
$$\int{e^{- 2 x^{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\sqrt{2} x \right)}}{4}+C$$
答案
$$$\int e^{- 2 x^{2}}\, dx = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\sqrt{2} x \right)}}{4} + C$$$A