Integral de $$$e^{- 2 x^{2}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int e^{- 2 x^{2}}\, dx$$$.
Solución
Sea $$$u=\sqrt{2} x$$$.
Entonces $$$du=\left(\sqrt{2} x\right)^{\prime }dx = \sqrt{2} dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{\sqrt{2} du}{2}$$$.
Por lo tanto,
$${\color{red}{\int{e^{- 2 x^{2}} d x}}} = {\color{red}{\int{\frac{\sqrt{2} e^{- u^{2}}}{2} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{\sqrt{2}}{2}$$$ y $$$f{\left(u \right)} = e^{- u^{2}}$$$:
$${\color{red}{\int{\frac{\sqrt{2} e^{- u^{2}}}{2} d u}}} = {\color{red}{\left(\frac{\sqrt{2} \int{e^{- u^{2}} d u}}{2}\right)}}$$
Esta integral (Función error) no tiene una forma cerrada:
$$\frac{\sqrt{2} {\color{red}{\int{e^{- u^{2}} d u}}}}{2} = \frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{2}$$
Recordemos que $$$u=\sqrt{2} x$$$:
$$\frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{4} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{\sqrt{2} x}} \right)}}{4}$$
Por lo tanto,
$$\int{e^{- 2 x^{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\sqrt{2} x \right)}}{4}$$
Añade la constante de integración:
$$\int{e^{- 2 x^{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\sqrt{2} x \right)}}{4}+C$$
Respuesta
$$$\int e^{- 2 x^{2}}\, dx = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\sqrt{2} x \right)}}{4} + C$$$A