$$$e^{4 x^{2}}$$$ 的积分

该计算器将求出$$$e^{4 x^{2}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int e^{4 x^{2}}\, dx$$$

解答

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$

因此,

$${\color{red}{\int{e^{4 x^{2}} d x}}} = {\color{red}{\int{\frac{e^{u^{2}}}{2} d u}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = e^{u^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{e^{u^{2}}}{2} d u}}} = {\color{red}{\left(\frac{\int{e^{u^{2}} d u}}{2}\right)}}$$

该积分(虚误差函数)没有闭式表达式:

$$\frac{{\color{red}{\int{e^{u^{2}} d u}}}}{2} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}}{2}$$

回忆一下 $$$u=2 x$$$:

$$\frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{4} = \frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$

因此,

$$\int{e^{4 x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(2 x \right)}}{4}$$

加上积分常数:

$$\int{e^{4 x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(2 x \right)}}{4}+C$$

答案

$$$\int e^{4 x^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erfi}{\left(2 x \right)}}{4} + C$$$A


Please try a new game Rotatly