$$$e^{4 x^{2}}$$$の積分
入力内容
$$$\int e^{4 x^{2}}\, dx$$$ を求めよ。
解答
$$$u=2 x$$$ とする。
すると $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{2}$$$ となります。
したがって、
$${\color{red}{\int{e^{4 x^{2}} d x}}} = {\color{red}{\int{\frac{e^{u^{2}}}{2} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(u \right)} = e^{u^{2}}$$$ に対して適用する:
$${\color{red}{\int{\frac{e^{u^{2}}}{2} d u}}} = {\color{red}{\left(\frac{\int{e^{u^{2}} d u}}{2}\right)}}$$
この積分(虚誤差関数)には閉形式はありません:
$$\frac{{\color{red}{\int{e^{u^{2}} d u}}}}{2} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}}{2}$$
次のことを思い出してください $$$u=2 x$$$:
$$\frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{4} = \frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
したがって、
$$\int{e^{4 x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(2 x \right)}}{4}$$
積分定数を加える:
$$\int{e^{4 x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(2 x \right)}}{4}+C$$
解答
$$$\int e^{4 x^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erfi}{\left(2 x \right)}}{4} + C$$$A