$$$- x + \cos{\left(x \right)}$$$ 的积分

该计算器将求出$$$- x + \cos{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- x + \cos{\left(x \right)}\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(- x + \cos{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{\cos{\left(x \right)} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$\int{\cos{\left(x \right)} d x} - {\color{red}{\int{x d x}}}=\int{\cos{\left(x \right)} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\cos{\left(x \right)} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

余弦函数的积分为 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$

$$- \frac{x^{2}}{2} + {\color{red}{\int{\cos{\left(x \right)} d x}}} = - \frac{x^{2}}{2} + {\color{red}{\sin{\left(x \right)}}}$$

因此,

$$\int{\left(- x + \cos{\left(x \right)}\right)d x} = - \frac{x^{2}}{2} + \sin{\left(x \right)}$$

加上积分常数:

$$\int{\left(- x + \cos{\left(x \right)}\right)d x} = - \frac{x^{2}}{2} + \sin{\left(x \right)}+C$$

答案

$$$\int \left(- x + \cos{\left(x \right)}\right)\, dx = \left(- \frac{x^{2}}{2} + \sin{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly