Integral dari $$$- x + \cos{\left(x \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$- x + \cos{\left(x \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(- x + \cos{\left(x \right)}\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(- x + \cos{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{\cos{\left(x \right)} d x}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$\int{\cos{\left(x \right)} d x} - {\color{red}{\int{x d x}}}=\int{\cos{\left(x \right)} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\cos{\left(x \right)} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Integral dari kosinus adalah $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$- \frac{x^{2}}{2} + {\color{red}{\int{\cos{\left(x \right)} d x}}} = - \frac{x^{2}}{2} + {\color{red}{\sin{\left(x \right)}}}$$

Oleh karena itu,

$$\int{\left(- x + \cos{\left(x \right)}\right)d x} = - \frac{x^{2}}{2} + \sin{\left(x \right)}$$

Tambahkan konstanta integrasi:

$$\int{\left(- x + \cos{\left(x \right)}\right)d x} = - \frac{x^{2}}{2} + \sin{\left(x \right)}+C$$

Jawaban

$$$\int \left(- x + \cos{\left(x \right)}\right)\, dx = \left(- \frac{x^{2}}{2} + \sin{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly