$$$- x + \cos{\left(x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$- x + \cos{\left(x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(- x + \cos{\left(x \right)}\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(- x + \cos{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{\cos{\left(x \right)} d x}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:

$$\int{\cos{\left(x \right)} d x} - {\color{red}{\int{x d x}}}=\int{\cos{\left(x \right)} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\cos{\left(x \right)} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Kosinüsün integrali $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$- \frac{x^{2}}{2} + {\color{red}{\int{\cos{\left(x \right)} d x}}} = - \frac{x^{2}}{2} + {\color{red}{\sin{\left(x \right)}}}$$

Dolayısıyla,

$$\int{\left(- x + \cos{\left(x \right)}\right)d x} = - \frac{x^{2}}{2} + \sin{\left(x \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(- x + \cos{\left(x \right)}\right)d x} = - \frac{x^{2}}{2} + \sin{\left(x \right)}+C$$

Cevap

$$$\int \left(- x + \cos{\left(x \right)}\right)\, dx = \left(- \frac{x^{2}}{2} + \sin{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly