$$$\frac{9}{5 - 4 x}$$$ 的积分

该计算器将求出$$$\frac{9}{5 - 4 x}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{9}{5 - 4 x}\, dx$$$

解答

$$$c=9$$$$$$f{\left(x \right)} = \frac{1}{5 - 4 x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{9}{5 - 4 x} d x}}} = {\color{red}{\left(9 \int{\frac{1}{5 - 4 x} d x}\right)}}$$

$$$u=5 - 4 x$$$

$$$du=\left(5 - 4 x\right)^{\prime }dx = - 4 dx$$$ (步骤见»),并有$$$dx = - \frac{du}{4}$$$

积分变为

$$9 {\color{red}{\int{\frac{1}{5 - 4 x} d x}}} = 9 {\color{red}{\int{\left(- \frac{1}{4 u}\right)d u}}}$$

$$$c=- \frac{1}{4}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$9 {\color{red}{\int{\left(- \frac{1}{4 u}\right)d u}}} = 9 {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{4}\right)}}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{9 {\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$

回忆一下 $$$u=5 - 4 x$$$:

$$- \frac{9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = - \frac{9 \ln{\left(\left|{{\color{red}{\left(5 - 4 x\right)}}}\right| \right)}}{4}$$

因此,

$$\int{\frac{9}{5 - 4 x} d x} = - \frac{9 \ln{\left(\left|{4 x - 5}\right| \right)}}{4}$$

加上积分常数:

$$\int{\frac{9}{5 - 4 x} d x} = - \frac{9 \ln{\left(\left|{4 x - 5}\right| \right)}}{4}+C$$

答案

$$$\int \frac{9}{5 - 4 x}\, dx = - \frac{9 \ln\left(\left|{4 x - 5}\right|\right)}{4} + C$$$A


Please try a new game Rotatly