$$$\frac{9}{5 - 4 x}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{9}{5 - 4 x}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=9$$$ ve $$$f{\left(x \right)} = \frac{1}{5 - 4 x}$$$ ile uygula:
$${\color{red}{\int{\frac{9}{5 - 4 x} d x}}} = {\color{red}{\left(9 \int{\frac{1}{5 - 4 x} d x}\right)}}$$
$$$u=5 - 4 x$$$ olsun.
Böylece $$$du=\left(5 - 4 x\right)^{\prime }dx = - 4 dx$$$ (adımlar » görülebilir) ve $$$dx = - \frac{du}{4}$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$$9 {\color{red}{\int{\frac{1}{5 - 4 x} d x}}} = 9 {\color{red}{\int{\left(- \frac{1}{4 u}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=- \frac{1}{4}$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:
$$9 {\color{red}{\int{\left(- \frac{1}{4 u}\right)d u}}} = 9 {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{4}\right)}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{9 {\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$
Hatırlayın ki $$$u=5 - 4 x$$$:
$$- \frac{9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = - \frac{9 \ln{\left(\left|{{\color{red}{\left(5 - 4 x\right)}}}\right| \right)}}{4}$$
Dolayısıyla,
$$\int{\frac{9}{5 - 4 x} d x} = - \frac{9 \ln{\left(\left|{4 x - 5}\right| \right)}}{4}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{9}{5 - 4 x} d x} = - \frac{9 \ln{\left(\left|{4 x - 5}\right| \right)}}{4}+C$$
Cevap
$$$\int \frac{9}{5 - 4 x}\, dx = - \frac{9 \ln\left(\left|{4 x - 5}\right|\right)}{4} + C$$$A