$$$\frac{5 v}{1 - 4 v^{2}}$$$ 的积分
您的输入
求$$$\int \frac{5 v}{1 - 4 v^{2}}\, dv$$$。
解答
设$$$u=1 - 4 v^{2}$$$。
则$$$du=\left(1 - 4 v^{2}\right)^{\prime }dv = - 8 v dv$$$ (步骤见»),并有$$$v dv = - \frac{du}{8}$$$。
所以,
$${\color{red}{\int{\frac{5 v}{1 - 4 v^{2}} d v}}} = {\color{red}{\int{\left(- \frac{5}{8 u}\right)d u}}}$$
对 $$$c=- \frac{5}{8}$$$ 和 $$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\left(- \frac{5}{8 u}\right)d u}}} = {\color{red}{\left(- \frac{5 \int{\frac{1}{u} d u}}{8}\right)}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{8} = - \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$
回忆一下 $$$u=1 - 4 v^{2}$$$:
$$- \frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} = - \frac{5 \ln{\left(\left|{{\color{red}{\left(1 - 4 v^{2}\right)}}}\right| \right)}}{8}$$
因此,
$$\int{\frac{5 v}{1 - 4 v^{2}} d v} = - \frac{5 \ln{\left(\left|{4 v^{2} - 1}\right| \right)}}{8}$$
加上积分常数:
$$\int{\frac{5 v}{1 - 4 v^{2}} d v} = - \frac{5 \ln{\left(\left|{4 v^{2} - 1}\right| \right)}}{8}+C$$
答案
$$$\int \frac{5 v}{1 - 4 v^{2}}\, dv = - \frac{5 \ln\left(\left|{4 v^{2} - 1}\right|\right)}{8} + C$$$A