Integral dari $$$\frac{5 v}{1 - 4 v^{2}}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{5 v}{1 - 4 v^{2}}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{5 v}{1 - 4 v^{2}}\, dv$$$.

Solusi

Misalkan $$$u=1 - 4 v^{2}$$$.

Kemudian $$$du=\left(1 - 4 v^{2}\right)^{\prime }dv = - 8 v dv$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$v dv = - \frac{du}{8}$$$.

Integralnya menjadi

$${\color{red}{\int{\frac{5 v}{1 - 4 v^{2}} d v}}} = {\color{red}{\int{\left(- \frac{5}{8 u}\right)d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=- \frac{5}{8}$$$ dan $$$f{\left(u \right)} = \frac{1}{u}$$$:

$${\color{red}{\int{\left(- \frac{5}{8 u}\right)d u}}} = {\color{red}{\left(- \frac{5 \int{\frac{1}{u} d u}}{8}\right)}}$$

Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{8} = - \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$

Ingat bahwa $$$u=1 - 4 v^{2}$$$:

$$- \frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} = - \frac{5 \ln{\left(\left|{{\color{red}{\left(1 - 4 v^{2}\right)}}}\right| \right)}}{8}$$

Oleh karena itu,

$$\int{\frac{5 v}{1 - 4 v^{2}} d v} = - \frac{5 \ln{\left(\left|{4 v^{2} - 1}\right| \right)}}{8}$$

Tambahkan konstanta integrasi:

$$\int{\frac{5 v}{1 - 4 v^{2}} d v} = - \frac{5 \ln{\left(\left|{4 v^{2} - 1}\right| \right)}}{8}+C$$

Jawaban

$$$\int \frac{5 v}{1 - 4 v^{2}}\, dv = - \frac{5 \ln\left(\left|{4 v^{2} - 1}\right|\right)}{8} + C$$$A


Please try a new game Rotatly