Integralen av $$$\frac{5 v}{1 - 4 v^{2}}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{5 v}{1 - 4 v^{2}}\, dv$$$.
Lösning
Låt $$$u=1 - 4 v^{2}$$$ vara.
Då $$$du=\left(1 - 4 v^{2}\right)^{\prime }dv = - 8 v dv$$$ (stegen kan ses »), och vi har att $$$v dv = - \frac{du}{8}$$$.
Integralen blir
$${\color{red}{\int{\frac{5 v}{1 - 4 v^{2}} d v}}} = {\color{red}{\int{\left(- \frac{5}{8 u}\right)d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=- \frac{5}{8}$$$ och $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\left(- \frac{5}{8 u}\right)d u}}} = {\color{red}{\left(- \frac{5 \int{\frac{1}{u} d u}}{8}\right)}}$$
Integralen av $$$\frac{1}{u}$$$ är $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{8} = - \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$
Kom ihåg att $$$u=1 - 4 v^{2}$$$:
$$- \frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} = - \frac{5 \ln{\left(\left|{{\color{red}{\left(1 - 4 v^{2}\right)}}}\right| \right)}}{8}$$
Alltså,
$$\int{\frac{5 v}{1 - 4 v^{2}} d v} = - \frac{5 \ln{\left(\left|{4 v^{2} - 1}\right| \right)}}{8}$$
Lägg till integrationskonstanten:
$$\int{\frac{5 v}{1 - 4 v^{2}} d v} = - \frac{5 \ln{\left(\left|{4 v^{2} - 1}\right| \right)}}{8}+C$$
Svar
$$$\int \frac{5 v}{1 - 4 v^{2}}\, dv = - \frac{5 \ln\left(\left|{4 v^{2} - 1}\right|\right)}{8} + C$$$A