$$$\frac{17 \sqrt{2}}{8 x \ln\left(x\right)}$$$ 的积分

该计算器将求出$$$\frac{17 \sqrt{2}}{8 x \ln\left(x\right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{17 \sqrt{2}}{8 x \ln\left(x\right)}\, dx$$$

解答

$$$c=\frac{17 \sqrt{2}}{8}$$$$$$f{\left(x \right)} = \frac{1}{x \ln{\left(x \right)}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{17 \sqrt{2}}{8 x \ln{\left(x \right)}} d x}}} = {\color{red}{\left(\frac{17 \sqrt{2} \int{\frac{1}{x \ln{\left(x \right)}} d x}}{8}\right)}}$$

$$$u=\ln{\left(x \right)}$$$

$$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (步骤见»),并有$$$\frac{dx}{x} = du$$$

该积分可以改写为

$$\frac{17 \sqrt{2} {\color{red}{\int{\frac{1}{x \ln{\left(x \right)}} d x}}}}{8} = \frac{17 \sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{8}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{17 \sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{8} = \frac{17 \sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$

回忆一下 $$$u=\ln{\left(x \right)}$$$:

$$\frac{17 \sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} = \frac{17 \sqrt{2} \ln{\left(\left|{{\color{red}{\ln{\left(x \right)}}}}\right| \right)}}{8}$$

因此,

$$\int{\frac{17 \sqrt{2}}{8 x \ln{\left(x \right)}} d x} = \frac{17 \sqrt{2} \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}}{8}$$

加上积分常数:

$$\int{\frac{17 \sqrt{2}}{8 x \ln{\left(x \right)}} d x} = \frac{17 \sqrt{2} \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}}{8}+C$$

答案

$$$\int \frac{17 \sqrt{2}}{8 x \ln\left(x\right)}\, dx = \frac{17 \sqrt{2} \ln\left(\left|{\ln\left(x\right)}\right|\right)}{8} + C$$$A


Please try a new game Rotatly