$$$\frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{e^{\frac{1}{2}}}$$$ 关于$$$x$$$的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{e^{\frac{1}{2}}}\, dx$$$。
解答
对 $$$c=\frac{i a g h o r^{3} t w}{e^{\frac{1}{2}}}$$$ 和 $$$f{\left(x \right)} = \ln{\left(x \right)}^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x}}} = {\color{red}{\frac{i a g h o r^{3} t w \int{\ln{\left(x \right)}^{2} d x}}{e^{\frac{1}{2}}}}}$$
对于积分$$$\int{\ln{\left(x \right)}^{2} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$ 和 $$$\operatorname{dv}=dx$$$。
则 $$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d x}=x$$$ (步骤见 »)。
该积分可以改写为
$$\frac{i a g h o r^{3} t w {\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w {\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w {\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}}{e^{\frac{1}{2}}}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \ln{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - {\color{red}{\int{2 \ln{\left(x \right)} d x}}}\right)}{e^{\frac{1}{2}}} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}\right)}{e^{\frac{1}{2}}}$$
对于积分$$$\int{\ln{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\ln{\left(x \right)}$$$ 和 $$$\operatorname{dv}=dx$$$。
则 $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d x}=x$$$ (步骤见 »)。
因此,
$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\int{\ln{\left(x \right)} d x}}}\right)}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}\right)}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}\right)}{e^{\frac{1}{2}}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{\int{1 d x}}}\right)}{e^{\frac{1}{2}}} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{x}}\right)}{e^{\frac{1}{2}}}$$
因此,
$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 x\right)}{e^{\frac{1}{2}}}$$
化简:
$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x} = \frac{i a g h o r^{3} t w x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)}{e^{\frac{1}{2}}}$$
加上积分常数:
$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x} = \frac{i a g h o r^{3} t w x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)}{e^{\frac{1}{2}}}+C$$
答案
$$$\int \frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{e^{\frac{1}{2}}}\, dx = \frac{i a g h o r^{3} t w x \left(\ln^{2}\left(x\right) - 2 \ln\left(x\right) + 2\right)}{e^{\frac{1}{2}}} + C$$$A