$$$\frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{e^{\frac{1}{2}}}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$\frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{e^{\frac{1}{2}}}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{e^{\frac{1}{2}}}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{i a g h o r^{3} t w}{e^{\frac{1}{2}}}$$$$$$f{\left(x \right)} = \ln{\left(x \right)}^{2}$$$ に対して適用する:

$${\color{red}{\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x}}} = {\color{red}{\frac{i a g h o r^{3} t w \int{\ln{\left(x \right)}^{2} d x}}{e^{\frac{1}{2}}}}}$$

積分 $$$\int{\ln{\left(x \right)}^{2} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$$$$\operatorname{dv}=dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d x}=x$$$(手順は»を参照)。

したがって、

$$\frac{i a g h o r^{3} t w {\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w {\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w {\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}}{e^{\frac{1}{2}}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$$$$f{\left(x \right)} = \ln{\left(x \right)}$$$ に対して適用する:

$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - {\color{red}{\int{2 \ln{\left(x \right)} d x}}}\right)}{e^{\frac{1}{2}}} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}\right)}{e^{\frac{1}{2}}}$$

積分 $$$\int{\ln{\left(x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d x}=x$$$(手順は»を参照)。

この積分は次のように書き換えられる

$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\int{\ln{\left(x \right)} d x}}}\right)}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}\right)}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}\right)}{e^{\frac{1}{2}}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:

$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{\int{1 d x}}}\right)}{e^{\frac{1}{2}}} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{x}}\right)}{e^{\frac{1}{2}}}$$

したがって、

$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 x\right)}{e^{\frac{1}{2}}}$$

簡単化せよ:

$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x} = \frac{i a g h o r^{3} t w x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)}{e^{\frac{1}{2}}}$$

積分定数を加える:

$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x} = \frac{i a g h o r^{3} t w x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)}{e^{\frac{1}{2}}}+C$$

解答

$$$\int \frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{e^{\frac{1}{2}}}\, dx = \frac{i a g h o r^{3} t w x \left(\ln^{2}\left(x\right) - 2 \ln\left(x\right) + 2\right)}{e^{\frac{1}{2}}} + C$$$A


Please try a new game Rotatly