$$$x$$$ değişkenine göre $$$\frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{e^{\frac{1}{2}}}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$\frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{e^{\frac{1}{2}}}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{e^{\frac{1}{2}}}\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{i a g h o r^{3} t w}{e^{\frac{1}{2}}}$$$ ve $$$f{\left(x \right)} = \ln{\left(x \right)}^{2}$$$ ile uygula:

$${\color{red}{\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x}}} = {\color{red}{\frac{i a g h o r^{3} t w \int{\ln{\left(x \right)}^{2} d x}}{e^{\frac{1}{2}}}}}$$

$$$\int{\ln{\left(x \right)}^{2} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$ ve $$$\operatorname{dv}=dx$$$ olsun.

O halde $$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d x}=x$$$ (adımlar için bkz. »).

Dolayısıyla,

$$\frac{i a g h o r^{3} t w {\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w {\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w {\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}}{e^{\frac{1}{2}}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=2$$$ ve $$$f{\left(x \right)} = \ln{\left(x \right)}$$$ ile uygula:

$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - {\color{red}{\int{2 \ln{\left(x \right)} d x}}}\right)}{e^{\frac{1}{2}}} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}\right)}{e^{\frac{1}{2}}}$$

$$$\int{\ln{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=\ln{\left(x \right)}$$$ ve $$$\operatorname{dv}=dx$$$ olsun.

O halde $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d x}=x$$$ (adımlar için bkz. »).

İntegral şu şekilde yeniden yazılabilir:

$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\int{\ln{\left(x \right)} d x}}}\right)}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}\right)}{e^{\frac{1}{2}}}=\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}\right)}{e^{\frac{1}{2}}}$$

$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$\frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{\int{1 d x}}}\right)}{e^{\frac{1}{2}}} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{x}}\right)}{e^{\frac{1}{2}}}$$

Dolayısıyla,

$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x} = \frac{i a g h o r^{3} t w \left(x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 x\right)}{e^{\frac{1}{2}}}$$

Sadeleştirin:

$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x} = \frac{i a g h o r^{3} t w x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)}{e^{\frac{1}{2}}}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{i a g h o r^{3} t w \ln{\left(x \right)}^{2}}{e^{\frac{1}{2}}} d x} = \frac{i a g h o r^{3} t w x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)}{e^{\frac{1}{2}}}+C$$

Cevap

$$$\int \frac{i a g h o r^{3} t w \ln^{2}\left(x\right)}{e^{\frac{1}{2}}}\, dx = \frac{i a g h o r^{3} t w x \left(\ln^{2}\left(x\right) - 2 \ln\left(x\right) + 2\right)}{e^{\frac{1}{2}}} + C$$$A


Please try a new game Rotatly