曲线$$$y = x^{3} - 3 x + 2$$$$$$x = 2$$$处的切线

该计算器将求函数$$$y = x^{3} - 3 x + 2$$$在点$$$x = 2$$$处的切线及其斜率,并显示步骤。

相关计算器: 法线计算器

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

计算$$$y = x^{3} - 3 x + 2$$$$$$x = 2$$$处的切线。

解答

已知 $$$f{\left(x \right)} = x^{3} - 3 x + 2$$$$$$x_{0} = 2$$$

在给定点处求函数的值:$$$y_{0} = f{\left(2 \right)} = 4$$$

$$$x = x_{0}$$$处的切线斜率等于函数在$$$x = x_{0}$$$处的导数:$$$M{\left(x_{0} \right)} = f^{\prime }\left(x_{0}\right)$$$

求导数:$$$f^{\prime }\left(x\right) = \left(x^{3} - 3 x + 2\right)^{\prime } = 3 x^{2} - 3$$$(步骤请参见导数计算器)。

因此,$$$M{\left(x_{0} \right)} = f^{\prime }\left(x_{0}\right) = 3 x_{0}^{2} - 3$$$

接下来,在给定点处求斜率。

$$$m = M{\left(2 \right)} = 9$$$

最后,切线的方程为 $$$y - y_{0} = m \left(x - x_{0}\right)$$$

将求得的值代入,得到$$$y - 4 = 9 \left(x - 2\right)$$$

或者,更简单地说:$$$y = 9 x - 14$$$

答案

切线的方程为 $$$y = 9 x - 14$$$A


Please try a new game Rotatly