$$$\tan^{2}{\left(x \right)}$$$ 的二阶导数

该计算器将求出$$$\tan^{2}{\left(x \right)}$$$的二阶导数,并显示步骤。

相关计算器: 导数计算器, 对数求导法计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d^{2}}{dx^{2}} \left(\tan^{2}{\left(x \right)}\right)$$$

解答

求一阶导数 $$$\frac{d}{dx} \left(\tan^{2}{\left(x \right)}\right)$$$

函数$$$\tan^{2}{\left(x \right)}$$$是两个函数$$$f{\left(u \right)} = u^{2}$$$$$$g{\left(x \right)} = \tan{\left(x \right)}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\tan^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\tan{\left(x \right)}\right)\right)}$$

应用幂次法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,其中 $$$n = 2$$$:

$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\tan{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\tan{\left(x \right)}\right)$$

返回到原变量:

$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\tan{\left(x \right)}\right) = 2 {\color{red}\left(\tan{\left(x \right)}\right)} \frac{d}{dx} \left(\tan{\left(x \right)}\right)$$

正切函数的导数为$$$\frac{d}{dx} \left(\tan{\left(x \right)}\right) = \sec^{2}{\left(x \right)}$$$:

$$2 \tan{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\tan{\left(x \right)}\right)\right)} = 2 \tan{\left(x \right)} {\color{red}\left(\sec^{2}{\left(x \right)}\right)}$$

因此,$$$\frac{d}{dx} \left(\tan^{2}{\left(x \right)}\right) = 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}$$$

接下来,$$$\frac{d^{2}}{dx^{2}} \left(\tan^{2}{\left(x \right)}\right) = \frac{d}{dx} \left(2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)$$$

$$$c = 2$$$$$$f{\left(x \right)} = \tan{\left(x \right)} \sec^{2}{\left(x \right)}$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(\tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)\right)}$$

$$$f{\left(x \right)} = \sec^{2}{\left(x \right)}$$$$$$g{\left(x \right)} = \tan{\left(x \right)}$$$ 应用乘积法则 $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$2 {\color{red}\left(\frac{d}{dx} \left(\tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)\right)} = 2 {\color{red}\left(\frac{d}{dx} \left(\sec^{2}{\left(x \right)}\right) \tan{\left(x \right)} + \sec^{2}{\left(x \right)} \frac{d}{dx} \left(\tan{\left(x \right)}\right)\right)}$$

正切函数的导数为$$$\frac{d}{dx} \left(\tan{\left(x \right)}\right) = \sec^{2}{\left(x \right)}$$$:

$$2 \tan{\left(x \right)} \frac{d}{dx} \left(\sec^{2}{\left(x \right)}\right) + 2 \sec^{2}{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\tan{\left(x \right)}\right)\right)} = 2 \tan{\left(x \right)} \frac{d}{dx} \left(\sec^{2}{\left(x \right)}\right) + 2 \sec^{2}{\left(x \right)} {\color{red}\left(\sec^{2}{\left(x \right)}\right)}$$

函数$$$\sec^{2}{\left(x \right)}$$$是两个函数$$$f{\left(u \right)} = u^{2}$$$$$$g{\left(x \right)} = \sec{\left(x \right)}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$$2 \tan{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\sec^{2}{\left(x \right)}\right)\right)} + 2 \sec^{4}{\left(x \right)} = 2 \tan{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)} + 2 \sec^{4}{\left(x \right)}$$

应用幂次法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,其中 $$$n = 2$$$:

$$2 \tan{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right) + 2 \sec^{4}{\left(x \right)} = 2 \tan{\left(x \right)} {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right) + 2 \sec^{4}{\left(x \right)}$$

返回到原变量:

$$4 \tan{\left(x \right)} {\color{red}\left(u\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right) + 2 \sec^{4}{\left(x \right)} = 4 \tan{\left(x \right)} {\color{red}\left(\sec{\left(x \right)}\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right) + 2 \sec^{4}{\left(x \right)}$$

正割函数的导数为 $$$\frac{d}{dx} \left(\sec{\left(x \right)}\right) = \tan{\left(x \right)} \sec{\left(x \right)}$$$

$$4 \tan{\left(x \right)} \sec{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)} + 2 \sec^{4}{\left(x \right)} = 4 \tan{\left(x \right)} \sec{\left(x \right)} {\color{red}\left(\tan{\left(x \right)} \sec{\left(x \right)}\right)} + 2 \sec^{4}{\left(x \right)}$$

化简:

$$4 \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)} + 2 \sec^{4}{\left(x \right)} = \left(-4 + \frac{6}{\cos^{2}{\left(x \right)}}\right) \sec^{2}{\left(x \right)}$$

因此,$$$\frac{d}{dx} \left(2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}\right) = \left(-4 + \frac{6}{\cos^{2}{\left(x \right)}}\right) \sec^{2}{\left(x \right)}$$$

因此,$$$\frac{d^{2}}{dx^{2}} \left(\tan^{2}{\left(x \right)}\right) = \left(-4 + \frac{6}{\cos^{2}{\left(x \right)}}\right) \sec^{2}{\left(x \right)}$$$

答案

$$$\frac{d^{2}}{dx^{2}} \left(\tan^{2}{\left(x \right)}\right) = \left(-4 + \frac{6}{\cos^{2}{\left(x \right)}}\right) \sec^{2}{\left(x \right)}$$$A


Please try a new game Rotatly