$$$3^{x}$$$ 的二阶导数

该计算器将求出$$$3^{x}$$$的二阶导数,并显示步骤。

相关计算器: 导数计算器, 对数求导法计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right)$$$

解答

求一阶导数 $$$\frac{d}{dx} \left(3^{x}\right)$$$

应用指数法则 $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$,其中 $$$n = 3$$$

$${\color{red}\left(\frac{d}{dx} \left(3^{x}\right)\right)} = {\color{red}\left(3^{x} \ln\left(3\right)\right)}$$

因此,$$$\frac{d}{dx} \left(3^{x}\right) = 3^{x} \ln\left(3\right)$$$

接下来,$$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right) = \frac{d}{dx} \left(3^{x} \ln\left(3\right)\right)$$$

$$$c = \ln\left(3\right)$$$$$$f{\left(x \right)} = 3^{x}$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(3^{x} \ln\left(3\right)\right)\right)} = {\color{red}\left(\ln\left(3\right) \frac{d}{dx} \left(3^{x}\right)\right)}$$

应用指数法则 $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$,其中 $$$n = 3$$$

$$\ln\left(3\right) {\color{red}\left(\frac{d}{dx} \left(3^{x}\right)\right)} = \ln\left(3\right) {\color{red}\left(3^{x} \ln\left(3\right)\right)}$$

因此,$$$\frac{d}{dx} \left(3^{x} \ln\left(3\right)\right) = 3^{x} \ln^{2}\left(3\right)$$$

因此,$$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right) = 3^{x} \ln^{2}\left(3\right)$$$

答案

$$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right) = 3^{x} \ln^{2}\left(3\right)$$$A


Please try a new game Rotatly