Turunan kedua dari $$$3^{x}$$$
Kalkulator terkait: Kalkulator Turunan, Kalkulator Diferensiasi Logaritmik
Masukan Anda
Temukan $$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right)$$$.
Solusi
Tentukan turunan pertama $$$\frac{d}{dx} \left(3^{x}\right)$$$
Terapkan aturan eksponen $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$ dengan $$$n = 3$$$:
$${\color{red}\left(\frac{d}{dx} \left(3^{x}\right)\right)} = {\color{red}\left(3^{x} \ln\left(3\right)\right)}$$Dengan demikian, $$$\frac{d}{dx} \left(3^{x}\right) = 3^{x} \ln\left(3\right)$$$.
Selanjutnya, $$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right) = \frac{d}{dx} \left(3^{x} \ln\left(3\right)\right)$$$
Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = \ln\left(3\right)$$$ dan $$$f{\left(x \right)} = 3^{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(3^{x} \ln\left(3\right)\right)\right)} = {\color{red}\left(\ln\left(3\right) \frac{d}{dx} \left(3^{x}\right)\right)}$$Terapkan aturan eksponen $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$ dengan $$$n = 3$$$:
$$\ln\left(3\right) {\color{red}\left(\frac{d}{dx} \left(3^{x}\right)\right)} = \ln\left(3\right) {\color{red}\left(3^{x} \ln\left(3\right)\right)}$$Dengan demikian, $$$\frac{d}{dx} \left(3^{x} \ln\left(3\right)\right) = 3^{x} \ln^{2}\left(3\right)$$$.
Oleh karena itu, $$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right) = 3^{x} \ln^{2}\left(3\right)$$$.
Jawaban
$$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right) = 3^{x} \ln^{2}\left(3\right)$$$A