$$$x^{x}$$$的导数

该计算器将使用对数微分法求$$$x^{x}$$$的导数,并显示步骤。

相关计算器: 导数计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dx} \left(x^{x}\right)$$$

解答

$$$H{\left(x \right)} = x^{x}$$$

对等式两边取对数:$$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{x}\right)$$$

利用对数的性质改写等式右边:$$$\ln\left(H{\left(x \right)}\right) = x \ln\left(x\right)$$$

分别对方程两边求导:$$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(x \ln\left(x\right)\right)$$$

对方程的左边求导。

函数$$$\ln\left(H{\left(x \right)}\right)$$$是两个函数$$$f{\left(u \right)} = \ln\left(u\right)$$$$$$g{\left(x \right)} = H{\left(x \right)}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

自然对数的导数为 $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

返回到原变量:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

因此,$$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$

对等式右边求导。

$$$f{\left(x \right)} = x$$$$$$g{\left(x \right)} = \ln\left(x\right)$$$ 应用乘积法则 $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

自然对数的导数为 $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$

$$x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right) = x {\color{red}\left(\frac{1}{x}\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right)$$

应用幂法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$

$$\ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 1 = \ln\left(x\right) {\color{red}\left(1\right)} + 1$$

因此,$$$\frac{d}{dx} \left(x \ln\left(x\right)\right) = \ln\left(x\right) + 1$$$

因此,$$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \ln\left(x\right) + 1$$$

因此,$$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\ln\left(x\right) + 1\right) H{\left(x \right)} = x^{x} \left(\ln\left(x\right) + 1\right)$$$

答案

$$$\frac{d}{dx} \left(x^{x}\right) = x^{x} \left(\ln\left(x\right) + 1\right)$$$A


Please try a new game Rotatly