Derivado de $$$x^{x}$$$

La calculadora encontrará la derivada de $$$x^{x}$$$ usando la diferenciación logarítmica, con los pasos que se muestran.

Calculadora relacionada: Calculadora de derivados

Deje vacío para la detección automática.
Deje en blanco, si no necesita la derivada en un punto específico.

Si la calculadora no calculó algo o ha identificado un error, o tiene una sugerencia/comentario, escríbalo en los comentarios a continuación.

Tu aportación

Encuentra $$$\frac{d}{dx} \left(x^{x}\right)$$$.

Solución

Sea $$$H{\left(x \right)} = x^{x}$$$.

Toma el logaritmo de ambos lados: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{x}\right)$$$.

Vuelve a escribir la RHS usando las propiedades de los logaritmos: $$$\ln\left(H{\left(x \right)}\right) = x \ln\left(x\right)$$$.

Derive por separado ambos lados de la ecuación: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(x \ln\left(x\right)\right)$$$.

Diferenciar el LHS de la ecuación.

La función $$$\ln\left(H{\left(x \right)}\right)$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \ln\left(u\right)$$$ y $$$g{\left(x \right)} = H{\left(x \right)}$$$.

Aplicar la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

La derivada del logaritmo natural es $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

Vuelva a la variable anterior:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Por lo tanto, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.

Derive la RHS de la ecuación.

Aplique la regla del producto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ con $$$f{\left(x \right)} = x$$$ y $$$g{\left(x \right)} = \ln\left(x\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

Aplique la regla de potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$x \frac{d}{dx} \left(\ln\left(x\right)\right) + \ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x \frac{d}{dx} \left(\ln\left(x\right)\right) + \ln\left(x\right) {\color{red}\left(1\right)}$$

La derivada del logaritmo natural es $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \ln\left(x\right) = x {\color{red}\left(\frac{1}{x}\right)} + \ln\left(x\right)$$

Por lo tanto, $$$\frac{d}{dx} \left(x \ln\left(x\right)\right) = \ln\left(x\right) + 1$$$.

Por lo tanto, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \ln\left(x\right) + 1$$$.

Por lo tanto, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\ln\left(x\right) + 1\right) H{\left(x \right)} = x^{x} \left(\ln\left(x\right) + 1\right)$$$.

Respuesta

$$$\frac{d}{dx} \left(x^{x}\right) = x^{x} \left(\ln\left(x\right) + 1\right)$$$A