Παράγωγος της $$$x^{x}$$$

Ο υπολογιστής θα βρει την παράγωγο της $$$x^{x}$$$ χρησιμοποιώντας τη λογαριθμική παραγώγιση, με εμφανιζόμενα βήματα.

Σχετικός υπολογιστής: Υπολογιστής Παραγώγου

Αφήστε κενό για αυτόματη ανίχνευση.
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d}{dx} \left(x^{x}\right)$$$.

Λύση

Έστω $$$H{\left(x \right)} = x^{x}$$$.

Πάρτε τον λογάριθμο και στα δύο μέλη: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{x}\right)$$$.

Ξαναγράψτε το δεξί μέλος χρησιμοποιώντας τις ιδιότητες των λογαρίθμων: $$$\ln\left(H{\left(x \right)}\right) = x \ln\left(x\right)$$$.

Παραγώγισε χωριστά και τα δύο μέλη της εξίσωσης: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(x \ln\left(x\right)\right)$$$.

Υπολογίστε την παράγωγο του αριστερού μέλους της εξίσωσης.

Η συνάρτηση $$$\ln\left(H{\left(x \right)}\right)$$$ είναι η σύνθεση $$$f{\left(g{\left(x \right)} \right)}$$$ των δύο συναρτήσεων $$$f{\left(u \right)} = \ln\left(u\right)$$$ και $$$g{\left(x \right)} = H{\left(x \right)}$$$.

Εφαρμόστε τον κανόνα της αλυσίδας $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

Η παράγωγος του φυσικού λογαρίθμου είναι $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

Επιστροφή στην αρχική μεταβλητή:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Άρα, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.

Παραγώγισε το δεξί μέλος της εξίσωσης.

Εφαρμόστε τον κανόνα του γινομένου $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ με $$$f{\left(x \right)} = x$$$ και $$$g{\left(x \right)} = \ln\left(x\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

Η παράγωγος του φυσικού λογαρίθμου είναι $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right) = x {\color{red}\left(\frac{1}{x}\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right)$$

Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 1 = \ln\left(x\right) {\color{red}\left(1\right)} + 1$$

Άρα, $$$\frac{d}{dx} \left(x \ln\left(x\right)\right) = \ln\left(x\right) + 1$$$.

Συνεπώς, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \ln\left(x\right) + 1$$$.

Επομένως, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\ln\left(x\right) + 1\right) H{\left(x \right)} = x^{x} \left(\ln\left(x\right) + 1\right)$$$.

Απάντηση

$$$\frac{d}{dx} \left(x^{x}\right) = x^{x} \left(\ln\left(x\right) + 1\right)$$$A


Please try a new game Rotatly