$$$x + \sin{\left(x \right)}$$$的导数
您的输入
求$$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dx} \left(x + \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$正弦函数的导数为 $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(x\right) = {\color{red}\left(\cos{\left(x \right)}\right)} + \frac{d}{dx} \left(x\right)$$应用幂法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \cos{\left(x \right)} + {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right) = \cos{\left(x \right)} + 1$$$。
答案
$$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right) = \cos{\left(x \right)} + 1$$$A
Please try a new game Rotatly