$$$x^{3} - 1$$$的导数
您的输入
求$$$\frac{d}{dx} \left(x^{3} - 1\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dx} \left(x^{3} - 1\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) - \frac{d}{dx} \left(1\right)\right)}$$常数的导数是$$$0$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = - {\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{3}\right)$$应用幂次法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,其中 $$$n = 3$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} = {\color{red}\left(3 x^{2}\right)}$$因此,$$$\frac{d}{dx} \left(x^{3} - 1\right) = 3 x^{2}$$$。
答案
$$$\frac{d}{dx} \left(x^{3} - 1\right) = 3 x^{2}$$$A
Please try a new game Rotatly