$$$x^{2} - 48 x$$$的导数
您的输入
求$$$\frac{d}{dx} \left(x^{2} - 48 x\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dx} \left(x^{2} - 48 x\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) - \frac{d}{dx} \left(48 x\right)\right)}$$应用幂次法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,其中 $$$n = 2$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} - \frac{d}{dx} \left(48 x\right) = {\color{red}\left(2 x\right)} - \frac{d}{dx} \left(48 x\right)$$对 $$$c = 48$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$:
$$2 x - {\color{red}\left(\frac{d}{dx} \left(48 x\right)\right)} = 2 x - {\color{red}\left(48 \frac{d}{dx} \left(x\right)\right)}$$应用幂法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$:
$$2 x - 48 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 2 x - 48 {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dx} \left(x^{2} - 48 x\right) = 2 x - 48$$$。
答案
$$$\frac{d}{dx} \left(x^{2} - 48 x\right) = 2 x - 48$$$A
Please try a new game Rotatly