$$$u \ln\left(2\right)$$$的导数
您的输入
求$$$\frac{d}{du} \left(u \ln\left(2\right)\right)$$$。
解答
对 $$$c = \ln\left(2\right)$$$ 和 $$$f{\left(u \right)} = u$$$ 应用常数倍法则 $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$:
$${\color{red}\left(\frac{d}{du} \left(u \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{du} \left(u\right)\right)}$$应用幂法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{du} \left(u\right) = 1$$$:
$$\ln\left(2\right) {\color{red}\left(\frac{d}{du} \left(u\right)\right)} = \ln\left(2\right) {\color{red}\left(1\right)}$$因此,$$$\frac{d}{du} \left(u \ln\left(2\right)\right) = \ln\left(2\right)$$$。
答案
$$$\frac{d}{du} \left(u \ln\left(2\right)\right) = \ln\left(2\right)$$$A
Please try a new game Rotatly