$$$t + \sqrt{2}$$$的导数
您的输入
求$$$\frac{d}{dt} \left(t + \sqrt{2}\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dt} \left(t + \sqrt{2}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(t\right) + \frac{d}{dt} \left(\sqrt{2}\right)\right)}$$常数的导数是$$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{2}\right)\right)} + \frac{d}{dt} \left(t\right) = {\color{red}\left(0\right)} + \frac{d}{dt} \left(t\right)$$应用幂法则 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dt} \left(t\right) = 1$$$:
$${\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dt} \left(t + \sqrt{2}\right) = 1$$$。
答案
$$$\frac{d}{dt} \left(t + \sqrt{2}\right) = 1$$$A
Please try a new game Rotatly