$$$t \left(t - 1\right)$$$的导数
您的输入
求$$$\frac{d}{dt} \left(t \left(t - 1\right)\right)$$$。
解答
对 $$$f{\left(t \right)} = t$$$ 和 $$$g{\left(t \right)} = t - 1$$$ 应用乘积法则 $$$\frac{d}{dt} \left(f{\left(t \right)} g{\left(t \right)}\right) = \frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} + f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dt} \left(t \left(t - 1\right)\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(t\right) \left(t - 1\right) + t \frac{d}{dt} \left(t - 1\right)\right)}$$应用幂法则 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dt} \left(t\right) = 1$$$:
$$t \frac{d}{dt} \left(t - 1\right) + \left(t - 1\right) {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = t \frac{d}{dt} \left(t - 1\right) + \left(t - 1\right) {\color{red}\left(1\right)}$$和/差的导数等于导数的和/差:
$$t {\color{red}\left(\frac{d}{dt} \left(t - 1\right)\right)} + t - 1 = t {\color{red}\left(\frac{d}{dt} \left(t\right) - \frac{d}{dt} \left(1\right)\right)} + t - 1$$常数的导数是$$$0$$$:
$$t \left(- {\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(t\right)\right) + t - 1 = t \left(- {\color{red}\left(0\right)} + \frac{d}{dt} \left(t\right)\right) + t - 1$$应用幂法则 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dt} \left(t\right) = 1$$$:
$$t {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + t - 1 = t {\color{red}\left(1\right)} + t - 1$$因此,$$$\frac{d}{dt} \left(t \left(t - 1\right)\right) = 2 t - 1$$$。
答案
$$$\frac{d}{dt} \left(t \left(t - 1\right)\right) = 2 t - 1$$$A
Please try a new game Rotatly