$$$\sqrt{1 - x^{2}}$$$的导数
您的输入
求$$$\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right)$$$。
解答
函数$$$\sqrt{1 - x^{2}}$$$是两个函数$$$f{\left(u \right)} = \sqrt{u}$$$和$$$g{\left(x \right)} = 1 - x^{2}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$。
应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right) \frac{d}{dx} \left(1 - x^{2}\right)\right)}$$应用幂次法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,其中 $$$n = \frac{1}{2}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right)\right)} \frac{d}{dx} \left(1 - x^{2}\right) = {\color{red}\left(\frac{1}{2 \sqrt{u}}\right)} \frac{d}{dx} \left(1 - x^{2}\right)$$返回到原变量:
$$\frac{\frac{d}{dx} \left(1 - x^{2}\right)}{2 \sqrt{{\color{red}\left(u\right)}}} = \frac{\frac{d}{dx} \left(1 - x^{2}\right)}{2 \sqrt{{\color{red}\left(1 - x^{2}\right)}}}$$和/差的导数等于导数的和/差:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(1 - x^{2}\right)\right)}}{2 \sqrt{1 - x^{2}}} = \frac{{\color{red}\left(\frac{d}{dx} \left(1\right) - \frac{d}{dx} \left(x^{2}\right)\right)}}{2 \sqrt{1 - x^{2}}}$$应用幂次法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,其中 $$$n = 2$$$:
$$\frac{- {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(1\right)}{2 \sqrt{1 - x^{2}}} = \frac{- {\color{red}\left(2 x\right)} + \frac{d}{dx} \left(1\right)}{2 \sqrt{1 - x^{2}}}$$常数的导数是$$$0$$$:
$$\frac{- 2 x + {\color{red}\left(\frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{1 - x^{2}}} = \frac{- 2 x + {\color{red}\left(0\right)}}{2 \sqrt{1 - x^{2}}}$$因此,$$$\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right) = - \frac{x}{\sqrt{1 - x^{2}}}$$$。
答案
$$$\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right) = - \frac{x}{\sqrt{1 - x^{2}}}$$$A
Please try a new game Rotatly