$$$\sqrt{1 - x^{2}}$$$的导数

该计算器将求$$$\sqrt{1 - x^{2}}$$$的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right)$$$

解答

函数$$$\sqrt{1 - x^{2}}$$$是两个函数$$$f{\left(u \right)} = \sqrt{u}$$$$$$g{\left(x \right)} = 1 - x^{2}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right) \frac{d}{dx} \left(1 - x^{2}\right)\right)}$$

应用幂次法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,其中 $$$n = \frac{1}{2}$$$:

$${\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right)\right)} \frac{d}{dx} \left(1 - x^{2}\right) = {\color{red}\left(\frac{1}{2 \sqrt{u}}\right)} \frac{d}{dx} \left(1 - x^{2}\right)$$

返回到原变量:

$$\frac{\frac{d}{dx} \left(1 - x^{2}\right)}{2 \sqrt{{\color{red}\left(u\right)}}} = \frac{\frac{d}{dx} \left(1 - x^{2}\right)}{2 \sqrt{{\color{red}\left(1 - x^{2}\right)}}}$$

和/差的导数等于导数的和/差:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(1 - x^{2}\right)\right)}}{2 \sqrt{1 - x^{2}}} = \frac{{\color{red}\left(\frac{d}{dx} \left(1\right) - \frac{d}{dx} \left(x^{2}\right)\right)}}{2 \sqrt{1 - x^{2}}}$$

应用幂次法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,其中 $$$n = 2$$$:

$$\frac{- {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(1\right)}{2 \sqrt{1 - x^{2}}} = \frac{- {\color{red}\left(2 x\right)} + \frac{d}{dx} \left(1\right)}{2 \sqrt{1 - x^{2}}}$$

常数的导数是$$$0$$$:

$$\frac{- 2 x + {\color{red}\left(\frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{1 - x^{2}}} = \frac{- 2 x + {\color{red}\left(0\right)}}{2 \sqrt{1 - x^{2}}}$$

因此,$$$\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right) = - \frac{x}{\sqrt{1 - x^{2}}}$$$

答案

$$$\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right) = - \frac{x}{\sqrt{1 - x^{2}}}$$$A


Please try a new game Rotatly