$$$\sin{\left(5 \theta \right)}$$$的导数
您的输入
求$$$\frac{d}{d\theta} \left(\sin{\left(5 \theta \right)}\right)$$$。
解答
函数$$$\sin{\left(5 \theta \right)}$$$是两个函数$$$f{\left(u \right)} = \sin{\left(u \right)}$$$和$$$g{\left(\theta \right)} = 5 \theta$$$的复合$$$f{\left(g{\left(\theta \right)} \right)}$$$。
应用链式法则 $$$\frac{d}{d\theta} \left(f{\left(g{\left(\theta \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{d\theta} \left(g{\left(\theta \right)}\right)$$$:
$${\color{red}\left(\frac{d}{d\theta} \left(\sin{\left(5 \theta \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{d\theta} \left(5 \theta\right)\right)}$$正弦函数的导数为 $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{d\theta} \left(5 \theta\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{d\theta} \left(5 \theta\right)$$返回到原变量:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{d\theta} \left(5 \theta\right) = \cos{\left({\color{red}\left(5 \theta\right)} \right)} \frac{d}{d\theta} \left(5 \theta\right)$$对 $$$c = 5$$$ 和 $$$f{\left(\theta \right)} = \theta$$$ 应用常数倍法则 $$$\frac{d}{d\theta} \left(c f{\left(\theta \right)}\right) = c \frac{d}{d\theta} \left(f{\left(\theta \right)}\right)$$$:
$$\cos{\left(5 \theta \right)} {\color{red}\left(\frac{d}{d\theta} \left(5 \theta\right)\right)} = \cos{\left(5 \theta \right)} {\color{red}\left(5 \frac{d}{d\theta} \left(\theta\right)\right)}$$应用幂法则 $$$\frac{d}{d\theta} \left(\theta^{n}\right) = n \theta^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{d\theta} \left(\theta\right) = 1$$$:
$$5 \cos{\left(5 \theta \right)} {\color{red}\left(\frac{d}{d\theta} \left(\theta\right)\right)} = 5 \cos{\left(5 \theta \right)} {\color{red}\left(1\right)}$$因此,$$$\frac{d}{d\theta} \left(\sin{\left(5 \theta \right)}\right) = 5 \cos{\left(5 \theta \right)}$$$。
答案
$$$\frac{d}{d\theta} \left(\sin{\left(5 \theta \right)}\right) = 5 \cos{\left(5 \theta \right)}$$$A