$$$r \cos{\left(\theta \right)}$$$ 关于 $$$r$$$ 的导数
您的输入
求$$$\frac{d}{dr} \left(r \cos{\left(\theta \right)}\right)$$$。
解答
对 $$$c = \cos{\left(\theta \right)}$$$ 和 $$$f{\left(r \right)} = r$$$ 应用常数倍法则 $$$\frac{d}{dr} \left(c f{\left(r \right)}\right) = c \frac{d}{dr} \left(f{\left(r \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dr} \left(r \cos{\left(\theta \right)}\right)\right)} = {\color{red}\left(\cos{\left(\theta \right)} \frac{d}{dr} \left(r\right)\right)}$$应用幂法则 $$$\frac{d}{dr} \left(r^{n}\right) = n r^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dr} \left(r\right) = 1$$$:
$$\cos{\left(\theta \right)} {\color{red}\left(\frac{d}{dr} \left(r\right)\right)} = \cos{\left(\theta \right)} {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dr} \left(r \cos{\left(\theta \right)}\right) = \cos{\left(\theta \right)}$$$。
答案
$$$\frac{d}{dr} \left(r \cos{\left(\theta \right)}\right) = \cos{\left(\theta \right)}$$$A
Please try a new game Rotatly