$$$\ln^{3}\left(x\right)$$$的导数

该计算器将求$$$\ln^{3}\left(x\right)$$$的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dx} \left(\ln^{3}\left(x\right)\right)$$$

解答

函数$$$\ln^{3}\left(x\right)$$$是两个函数$$$f{\left(u \right)} = u^{3}$$$$$$g{\left(x \right)} = \ln\left(x\right)$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\ln^{3}\left(x\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{3}\right) \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

应用幂次法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,其中 $$$n = 3$$$:

$${\color{red}\left(\frac{d}{du} \left(u^{3}\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = {\color{red}\left(3 u^{2}\right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$

返回到原变量:

$$3 {\color{red}\left(u\right)}^{2} \frac{d}{dx} \left(\ln\left(x\right)\right) = 3 {\color{red}\left(\ln\left(x\right)\right)}^{2} \frac{d}{dx} \left(\ln\left(x\right)\right)$$

自然对数的导数为 $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$

$$3 \ln^{2}\left(x\right) {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = 3 \ln^{2}\left(x\right) {\color{red}\left(\frac{1}{x}\right)}$$

因此,$$$\frac{d}{dx} \left(\ln^{3}\left(x\right)\right) = \frac{3 \ln^{2}\left(x\right)}{x}$$$

答案

$$$\frac{d}{dx} \left(\ln^{3}\left(x\right)\right) = \frac{3 \ln^{2}\left(x\right)}{x}$$$A


Please try a new game Rotatly