$$$\ln^{2}\left(u\right)$$$的导数

该计算器将求$$$\ln^{2}\left(u\right)$$$的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{du} \left(\ln^{2}\left(u\right)\right)$$$

解答

函数$$$\ln^{2}\left(u\right)$$$是两个函数$$$f{\left(v \right)} = v^{2}$$$$$$g{\left(u \right)} = \ln\left(u\right)$$$的复合$$$f{\left(g{\left(u \right)} \right)}$$$

应用链式法则 $$$\frac{d}{du} \left(f{\left(g{\left(u \right)} \right)}\right) = \frac{d}{dv} \left(f{\left(v \right)}\right) \frac{d}{du} \left(g{\left(u \right)}\right)$$$

$${\color{red}\left(\frac{d}{du} \left(\ln^{2}\left(u\right)\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(v^{2}\right) \frac{d}{du} \left(\ln\left(u\right)\right)\right)}$$

应用幂次法则 $$$\frac{d}{dv} \left(v^{n}\right) = n v^{n - 1}$$$,其中 $$$n = 2$$$:

$${\color{red}\left(\frac{d}{dv} \left(v^{2}\right)\right)} \frac{d}{du} \left(\ln\left(u\right)\right) = {\color{red}\left(2 v\right)} \frac{d}{du} \left(\ln\left(u\right)\right)$$

返回到原变量:

$$2 {\color{red}\left(v\right)} \frac{d}{du} \left(\ln\left(u\right)\right) = 2 {\color{red}\left(\ln\left(u\right)\right)} \frac{d}{du} \left(\ln\left(u\right)\right)$$

自然对数的导数为 $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$

$$2 \ln\left(u\right) {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} = 2 \ln\left(u\right) {\color{red}\left(\frac{1}{u}\right)}$$

因此,$$$\frac{d}{du} \left(\ln^{2}\left(u\right)\right) = \frac{2 \ln\left(u\right)}{u}$$$

答案

$$$\frac{d}{du} \left(\ln^{2}\left(u\right)\right) = \frac{2 \ln\left(u\right)}{u}$$$A


Please try a new game Rotatly