$$$i k n t t_{1}$$$ 关于 $$$t$$$ 的导数
您的输入
求$$$\frac{d}{dt} \left(i k n t t_{1}\right)$$$。
解答
对 $$$c = i k n t_{1}$$$ 和 $$$f{\left(t \right)} = t$$$ 应用常数倍法则 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dt} \left(i k n t t_{1}\right)\right)} = {\color{red}\left(i k n t_{1} \frac{d}{dt} \left(t\right)\right)}$$应用幂法则 $$$\frac{d}{dt} \left(t^{m}\right) = m t^{m - 1}$$$,取 $$$m = 1$$$,也就是说,$$$\frac{d}{dt} \left(t\right) = 1$$$:
$$i k n t_{1} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = i k n t_{1} {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dt} \left(i k n t t_{1}\right) = i k n t_{1}$$$。
答案
$$$\frac{d}{dt} \left(i k n t t_{1}\right) = i k n t_{1}$$$A
Please try a new game Rotatly