$$$e^{x} + \sin{\left(y z \right)}$$$ 关于 $$$x$$$ 的导数
您的输入
求$$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(e^{x}\right) + \frac{d}{dx} \left(\sin{\left(y z \right)}\right)\right)}$$常数的导数是$$$0$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(y z \right)}\right)\right)} + \frac{d}{dx} \left(e^{x}\right) = {\color{red}\left(0\right)} + \frac{d}{dx} \left(e^{x}\right)$$指数函数的导数为 $$$\frac{d}{dx} \left(e^{x}\right) = e^{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{x}\right)\right)} = {\color{red}\left(e^{x}\right)}$$因此,$$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right) = e^{x}$$$。
答案
$$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right) = e^{x}$$$A
Please try a new game Rotatly