$$$e^{t} \cos{\left(t \right)}$$$的导数

该计算器将求$$$e^{t} \cos{\left(t \right)}$$$的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dt} \left(e^{t} \cos{\left(t \right)}\right)$$$

解答

$$$f{\left(t \right)} = \cos{\left(t \right)}$$$$$$g{\left(t \right)} = e^{t}$$$ 应用乘积法则 $$$\frac{d}{dt} \left(f{\left(t \right)} g{\left(t \right)}\right) = \frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} + f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dt} \left(e^{t} \cos{\left(t \right)}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right) e^{t} + \cos{\left(t \right)} \frac{d}{dt} \left(e^{t}\right)\right)}$$

余弦函数的导数是$$$\frac{d}{dt} \left(\cos{\left(t \right)}\right) = - \sin{\left(t \right)}$$$

$$e^{t} {\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right)\right)} + \cos{\left(t \right)} \frac{d}{dt} \left(e^{t}\right) = e^{t} {\color{red}\left(- \sin{\left(t \right)}\right)} + \cos{\left(t \right)} \frac{d}{dt} \left(e^{t}\right)$$

指数函数的导数为 $$$\frac{d}{dt} \left(e^{t}\right) = e^{t}$$$

$$- e^{t} \sin{\left(t \right)} + \cos{\left(t \right)} {\color{red}\left(\frac{d}{dt} \left(e^{t}\right)\right)} = - e^{t} \sin{\left(t \right)} + \cos{\left(t \right)} {\color{red}\left(e^{t}\right)}$$

化简:

$$- e^{t} \sin{\left(t \right)} + e^{t} \cos{\left(t \right)} = \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}$$

因此,$$$\frac{d}{dt} \left(e^{t} \cos{\left(t \right)}\right) = \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}$$$

答案

$$$\frac{d}{dt} \left(e^{t} \cos{\left(t \right)}\right) = \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}$$$A


Please try a new game Rotatly