$$$e^{\frac{u}{2}}$$$的导数

该计算器将求$$$e^{\frac{u}{2}}$$$的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{du} \left(e^{\frac{u}{2}}\right)$$$

解答

函数$$$e^{\frac{u}{2}}$$$是两个函数$$$f{\left(v \right)} = e^{v}$$$$$$g{\left(u \right)} = \frac{u}{2}$$$的复合$$$f{\left(g{\left(u \right)} \right)}$$$

应用链式法则 $$$\frac{d}{du} \left(f{\left(g{\left(u \right)} \right)}\right) = \frac{d}{dv} \left(f{\left(v \right)}\right) \frac{d}{du} \left(g{\left(u \right)}\right)$$$

$${\color{red}\left(\frac{d}{du} \left(e^{\frac{u}{2}}\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(e^{v}\right) \frac{d}{du} \left(\frac{u}{2}\right)\right)}$$

指数函数的导数为 $$$\frac{d}{dv} \left(e^{v}\right) = e^{v}$$$

$${\color{red}\left(\frac{d}{dv} \left(e^{v}\right)\right)} \frac{d}{du} \left(\frac{u}{2}\right) = {\color{red}\left(e^{v}\right)} \frac{d}{du} \left(\frac{u}{2}\right)$$

返回到原变量:

$$e^{{\color{red}\left(v\right)}} \frac{d}{du} \left(\frac{u}{2}\right) = e^{{\color{red}\left(\frac{u}{2}\right)}} \frac{d}{du} \left(\frac{u}{2}\right)$$

$$$c = \frac{1}{2}$$$$$$f{\left(u \right)} = u$$$ 应用常数倍法则 $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$

$$e^{\frac{u}{2}} {\color{red}\left(\frac{d}{du} \left(\frac{u}{2}\right)\right)} = e^{\frac{u}{2}} {\color{red}\left(\frac{\frac{d}{du} \left(u\right)}{2}\right)}$$

应用幂法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{du} \left(u\right) = 1$$$

$$\frac{e^{\frac{u}{2}} {\color{red}\left(\frac{d}{du} \left(u\right)\right)}}{2} = \frac{e^{\frac{u}{2}} {\color{red}\left(1\right)}}{2}$$

因此,$$$\frac{d}{du} \left(e^{\frac{u}{2}}\right) = \frac{e^{\frac{u}{2}}}{2}$$$

答案

$$$\frac{d}{du} \left(e^{\frac{u}{2}}\right) = \frac{e^{\frac{u}{2}}}{2}$$$A


Please try a new game Rotatly