$$$e^{- x} \sin{\left(x \right)}$$$$$$x = c$$$ 处的导数

该计算器将求出$$$e^{- x} \sin{\left(x \right)}$$$$$$x = c$$$处的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

求出$$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)$$$,并在$$$x = c$$$处计算其值。

解答

$$$f{\left(x \right)} = e^{- x}$$$$$$g{\left(x \right)} = \sin{\left(x \right)}$$$ 应用乘积法则 $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(e^{- x}\right) \sin{\left(x \right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

函数$$$e^{- x}$$$是两个函数$$$f{\left(u \right)} = e^{u}$$$$$$g{\left(x \right)} = - x$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$$\sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(e^{- x}\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = \sin{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

指数函数的导数为 $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$

$$\sin{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = \sin{\left(x \right)} {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

返回到原变量:

$$e^{{\color{red}\left(u\right)}} \sin{\left(x \right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = e^{{\color{red}\left(- x\right)}} \sin{\left(x \right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

$$$c = -1$$$$$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$

$$e^{- x} \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(- x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = e^{- x} \sin{\left(x \right)} {\color{red}\left(- \frac{d}{dx} \left(x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

正弦函数的导数为 $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$$- e^{- x} \sin{\left(x \right)} \frac{d}{dx} \left(x\right) + e^{- x} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} = - e^{- x} \sin{\left(x \right)} \frac{d}{dx} \left(x\right) + e^{- x} {\color{red}\left(\cos{\left(x \right)}\right)}$$

应用幂法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$

$$- e^{- x} \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + e^{- x} \cos{\left(x \right)} = - e^{- x} \sin{\left(x \right)} {\color{red}\left(1\right)} + e^{- x} \cos{\left(x \right)}$$

化简:

$$- e^{- x} \sin{\left(x \right)} + e^{- x} \cos{\left(x \right)} = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$

因此,$$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right) = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$$

最后,在$$$x = c$$$处计算导数的值。

$$$\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)|_{\left(x = c\right)} = \sqrt{2} e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}$$$

答案

$$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right) = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$$A

$$$\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)|_{\left(x = c\right)} = \sqrt{2} e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}\approx 1.414213562373095 e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}$$$A


Please try a new game Rotatly