$$$\cos{\left(n x \right)}$$$ 关于 $$$x$$$ 的导数
您的输入
求$$$\frac{d}{dx} \left(\cos{\left(n x \right)}\right)$$$。
解答
函数$$$\cos{\left(n x \right)}$$$是两个函数$$$f{\left(u \right)} = \cos{\left(u \right)}$$$和$$$g{\left(x \right)} = n x$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$。
应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\cos{\left(n x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(n x\right)\right)}$$余弦函数的导数是$$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(n x\right) = {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(n x\right)$$返回到原变量:
$$- \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(n x\right) = - \sin{\left({\color{red}\left(n x\right)} \right)} \frac{d}{dx} \left(n x\right)$$对 $$$c = n$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$:
$$- \sin{\left(n x \right)} {\color{red}\left(\frac{d}{dx} \left(n x\right)\right)} = - \sin{\left(n x \right)} {\color{red}\left(n \frac{d}{dx} \left(x\right)\right)}$$应用幂法则 $$$\frac{d}{dx} \left(x^{m}\right) = m x^{m - 1}$$$,取 $$$m = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- n \sin{\left(n x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = - n \sin{\left(n x \right)} {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dx} \left(\cos{\left(n x \right)}\right) = - n \sin{\left(n x \right)}$$$。
答案
$$$\frac{d}{dx} \left(\cos{\left(n x \right)}\right) = - n \sin{\left(n x \right)}$$$A