$$$\cos{\left(e^{t} \right)}$$$的导数

该计算器将求$$$\cos{\left(e^{t} \right)}$$$的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right)$$$

解答

函数$$$\cos{\left(e^{t} \right)}$$$是两个函数$$$f{\left(u \right)} = \cos{\left(u \right)}$$$$$$g{\left(t \right)} = e^{t}$$$的复合$$$f{\left(g{\left(t \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$

$${\color{red}\left(\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dt} \left(e^{t}\right)\right)}$$

余弦函数的导数是$$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$

$${\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dt} \left(e^{t}\right) = {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dt} \left(e^{t}\right)$$

返回到原变量:

$$- \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(e^{t}\right) = - \sin{\left({\color{red}\left(e^{t}\right)} \right)} \frac{d}{dt} \left(e^{t}\right)$$

指数函数的导数为 $$$\frac{d}{dt} \left(e^{t}\right) = e^{t}$$$

$$- \sin{\left(e^{t} \right)} {\color{red}\left(\frac{d}{dt} \left(e^{t}\right)\right)} = - \sin{\left(e^{t} \right)} {\color{red}\left(e^{t}\right)}$$

因此,$$$\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right) = - e^{t} \sin{\left(e^{t} \right)}$$$

答案

$$$\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right) = - e^{t} \sin{\left(e^{t} \right)}$$$A


Please try a new game Rotatly